Beautifying the aspect and looks of a DE results table
Usage
de_table_painter(
res_de,
rounding_digits = NULL,
signif_digits = NULL,
up_DE_color = "darkred",
down_DE_color = "navyblue",
logfc_column = "log2FoldChange",
basemean_column = "baseMean",
lfcse_column = "lfcSE",
stat_column = "stat",
pvalue_column = "pvalue",
padj_column = "padj"
)
Arguments
- res_de
An object containing the results of the Differential Expression analysis workflow (e.g.
DESeq2
,edgeR
orlimma
). Currently, this can be aDESeqResults
object created using theDESeq2
framework. Or a data frame obtained from such an object throughderesult_to_df()
- rounding_digits
Numeric value, specifying the number of digits to round the numeric values of the DE table (except the p-values)
- signif_digits
Numeric value, specifying the number of significant digits to display for the p-values in the DE table
- up_DE_color
Character string, specifying the color to use for coloring the bar of upregulated genes.
- down_DE_color
Character string, specifying the color to use for coloring the bar of downregulated genes.
- logfc_column
Character string, defining the name of the column in which to find the log2 fold change.
- basemean_column
Character string, defining the name of the column in which to find the average expression value.
- lfcse_column
Character string, defining the name of the column in which to find the standard error of the log2 fold change.
- stat_column
Character string, defining the name of the column in which to find the values of the test statistic.
- pvalue_column
Character string, defining the name of the column in which to find the unadjusted p-values.
- padj_column
Character string, defining the name of the column in which to find the adjusted p-values.
Details
Feeding on the classical results of DE workflows, this function formats and tries to prettify the representation of the key values in it.
Examples
data(res_de_macrophage, package = "mosdef")
de_table_painter(res_macrophage_IFNg_vs_naive,
rounding_digits = 3,
signif_digits = 5)
## It is also possible to pass the "buttonified" table,
res_df_small <- deresult_to_df(res_macrophage_IFNg_vs_naive)[1:100, ]
buttonified_df <- buttonifier(res_df_small,
create_buttons_to = c("NCBI", "HPA"),
ens_col = "id",
ens_species = "Homo_sapiens",
output_format = "DF"
)
de_table_painter(buttonified_df,
rounding_digits = 3,
signif_digits = 5)